1. Radical Halogenation (Ch. 4)

Recognition: X_2 , hy

Predicting product Identify which carbon could give the most stable radical, and substitute a Br for an H on that carbon.

Stereochemistry: Leads to racemic, due to achiral radical intermediate.

Mech: Radical. Be able to draw propagation steps.

2. S_N2 Substitution

Any of a large variety of nuclophiles or electrophiles can work.

Recognition: A. Anionic Nucleophile, and

B. 1° or 2° alkyl halide

(3° alkyl halides fail, will give E2 upon treatment with Anionic Nucleophile/Base. For 2° alkyl halides, S_N2 is often accompanied by variable amounts of E2.)

Predicting product: Replace the halide with the anion nucleophile

Stereochemistry: Leads to Inversion of Configuration

Mech: Be able to draw completely. Only one concerted step!

$$OCH_3 + Br$$
 $OCH_3 + Br$ $S_N2: 1^\circ > 2^\circ > 3^\circ > \text{alkenyl}$

3. E2 Reactions.

Recognition: A. Anionic Nucleophile/Base, and

B. 3° or 2° alkyl halide

(1° alkyl halides undergo S_N2 instead. For 2° alkyl halides, E2 is often accompanied by variable amounts of S_N2 .)

Orientation: The most substituted alkene forms (unless a bulky base is used, ch. 7)

<u>Predicting product:</u> Remove halide and a hydrogen from the neighboring carbon that can give the most highly substituted alkene. The hydrogen on the neighboring carbon must be trans, however.

<u>Stereochemistry</u>: Anti/trans elimination. The hydrogen on the neighbor carbon must be trans/anti.

<u>Mech</u>: Concerted. Uses anion. Be able to draw completely. Only one concerted step!

Recognition: A. Neutral, weak nucleophile. No anionic nucleophile/base, and B. 3° or 2° alkyl halide. (Controlled by cation stability).

(1° alkyl halides undergo S_N2 instead. For 2° alkyl halides, S_N1 is often accompanied by variable amounts of E1.)

Predicting product: Remove halide and replace it with the nucleophile (minus an H atom!) **Stereochemistry**: Racemization. The achiral cation intermediate forgets any stereochem. **Mech**: Stepwise, 3 steps, via carbocation. Be able to draw completely.

5. E1 Reactions. $3^{\circ} > 2^{\circ} > 1^{\circ}$ (Controlled by cation stability)

Recognition: A. Neutral, weak nucleophile. No anionic nucleophile/base, and

B. 3° or 2° alkyl halide. (Controlled by cation stability).

(For 2° alkyl halides, E1 is often accompanied by variable amounts of S_N1.)

Orientation: The most substituted alkene forms

<u>Predicting the major product:</u> Remove halide and a hydrogen from the neighboring carbon that can give the most highly substituted alkene. The hydrogen on the neighboring carbon can be cis or trans.

Stereochemistry: Not an issue. The eliminating hydrogen can be cis or trans. .

Mech: Stepwise, 2 steps, via carbocation. Be able to draw completely.

Sorting among $S_N 2$, $S_N 1$, E2, E1: How do I predict?

Step 1: Check nucleophile/base.

- If neutral, then $S_N 1/E1 \rightarrow \text{mixture of both}$
- If anionic, then $\overline{S_N^2}/E2$.

Step 2: If <u>anionic</u>, and in the $S_N2/E2$, then <u>Check the substrate</u>.

- \circ 1° $\rightarrow S_N 2$
- \circ 2° $\rightarrow \overline{\underline{S_N}} \overline{\underline{2/E2}}$ mixture. Often more $\underline{S_N} \underline{2}$, but not reliable...
- \circ 3° $\rightarrow \underline{E2}$

Ch. 6 Alkyl Halides: Nucleophilic Substitution and Elimination

6.1,2 Classification, Nomenclature

A. General Classification

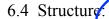
		<u> </u>
"alkyl halide"	halide connected to an sp3 (alky1) carbon	C1 7-1
"vinyl halide"	" sp² (vinyl ≈alkenyl)	br CI
aryl halide"	aromatic (sp2)	SI SI
"allylic halide"	•	3

B. 1°, 2°, 3° Classification

C. Systematic Naming: x (Haldalkane (test responsible) (Include number!)

D. Common Naming: "alkyl halide" (not tested)

Structure	Formal Name	Common Name	
CI	1-chloropromane	propyl chloride	
Br	2-bromo pertane		
<u> </u>	>-I 2-iodo	Isopropyl iodide	


Systematic Nomenclature: x-Haloalkane (test responsible)

Common: "alkyl halide" (not tested)

Uses:

- 1. solvents
- 2. anesthetics
- 3. refrigerants
- 4. pesticides
- 5. reactants

A. Polar

B. Weak Bonds, Breakable

Chem 350 Jasperse Ch. 6 Notes

Stability	Bond	Bond Strength (Reactivity Toward Breakage
1	C-Cl	81 1	
	C-Br	68	
	C-I	53	
	_	₫ -I :	> R-Br > R-Cl

6.5 Physical Properties

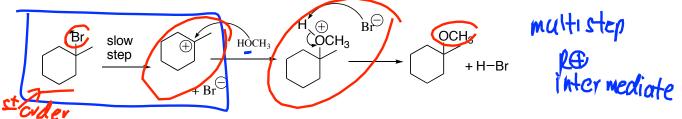
- boiling point: controlled by molecular weight (London force)
- water solubility: low, no hydrogen-bonding
- density: greater than water, so they sink (unlike hydrocarbons, which float)

6.6 Preparation of Alkyl Halides

- Review: R-H + Br RBr + HBr (under photolysis, Ch. 4)

 We will learn other preparations in chapters 8 and 11

- Because R-X bonds are weak, halides are good leaving groups.
- E. Substitution

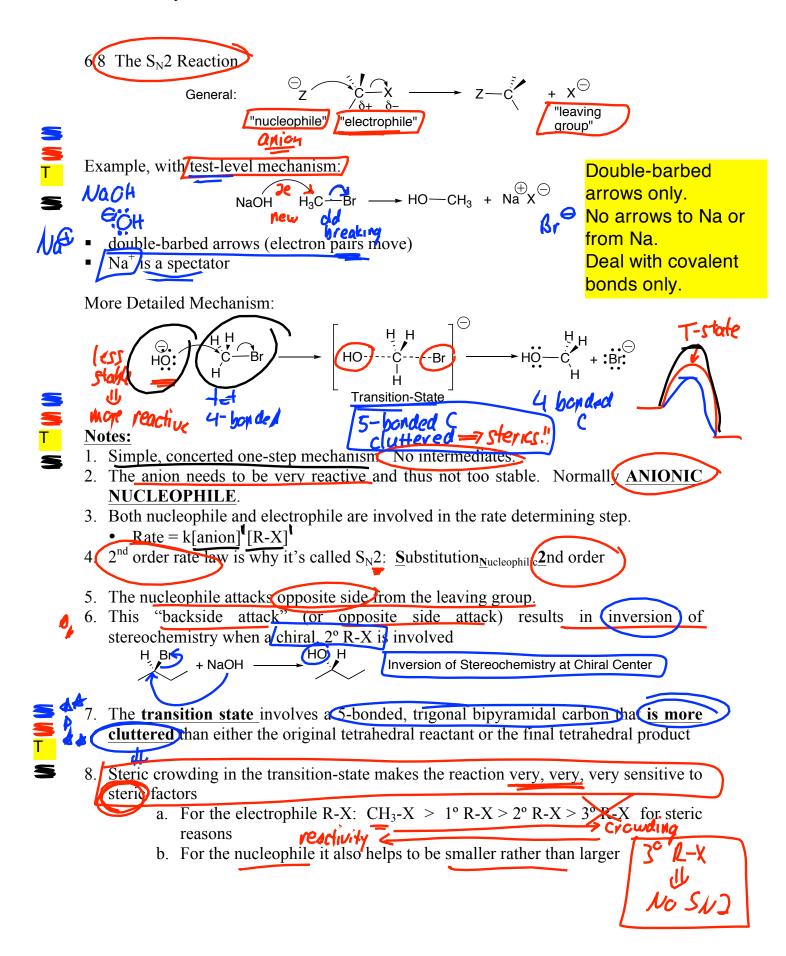

$$R-X + NaZ \text{ or } HZ \rightarrow RZ + NaX \text{ or } HX$$

Anion of neutral

- 2 Variants
- 6. S. 22 2 craer
 - Anionic nucleophile
 - The R-X bond breaking is simultaneous with R-Z bond formation

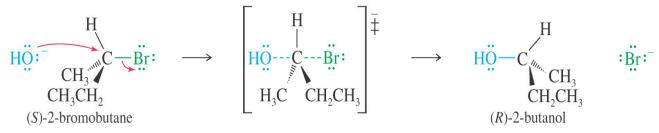
Br
$$OCH_3$$
 + Br OCH_3 + Br

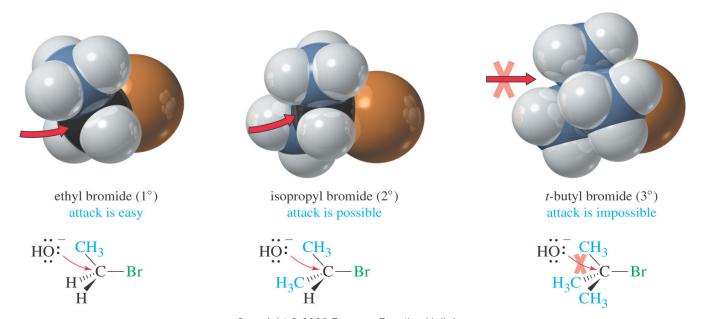
- 7. $S_N 1$:
 - Neutral nucleophile
 - The R-X bond breaks first to give a carbocation in the rate determining step; formation of the R-Z bond comes later


F. Elimination

- 2 Variants
- 1. E2:
 - Anionic base
 - The R-X and C-H bond breaking is simultaneous with C=C bond formation

- 2. E1:
 - Neutral base
 - The R-X bond breaks first to give a carbocation in the rate determining step. C-H bond cleavage and C=C bond formation comes later


alkene


Mechanism

- 1. Crowded transition state (sterics are crucial)
- 2. 2nd order (SN2)
- 3. Opposite-side attack => inversion

Copyright © 2006 Pearson Prentice Hall, Inc.

Steric Factor: methyl > primary > secondary >>> tertiary (can't work)

Copyright © 2006 Pearson Prentice Hall, Inc.

6.9 Generality of S_N2 Reactions

- -many kinds of nucleophiles, give many products
- 1. $R-X + NaOH \rightarrow R-OH$

Alcohols

2. $R-X+NOR \rightarrow R-O-R$

Ethers

Esters

4. $R \stackrel{\frown}{X} + K \stackrel{\frown}{I} \rightarrow R-I$

Iodides

5. $R^{C}X + NaCN \rightarrow R-CN$

Nitriles

6. $\mathbb{R}^{-1}X + \mathbb{S}^{-1} \rightarrow \mathbb{R}^{-1} \rightarrow \mathbb{R}^{-1}$

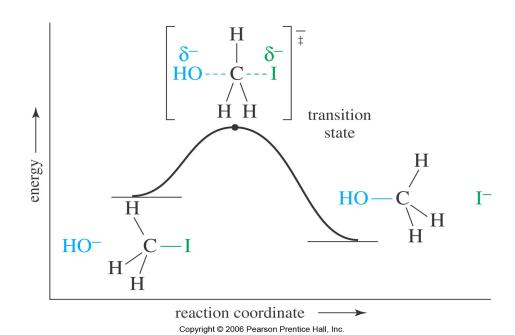
Alkynes

Etc.

Notes

1. Most nucleophiles are ANIONS

- 2. Various oxygen anions are good to make alcohols, ethers, or esters
- 3. Halogen exchange useful route to iodie (more valuable and less accessible)


4. There are a few neutral nucleophiles (not for test): <u>nitrogen family</u>

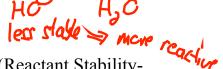
No

Predicting Products for S_N2 Reactions

- 1. Don't change the structure for the carbon skeleton
- 2. Put the nucleophile in exactly the spot where the halide began...
- 3. Unless the halide was attached to a **chiral** center; in that case invert the configuration for the product
 - If the halide was "wedged", the nucleophile should be "hashed"
 - If the halide was "hashed", the nucleophile should be "wedged"
- 4. Don't mess with any "spectator" portions: whatever was attached to the nucleophilic anion at the beginning should still be attached at the end

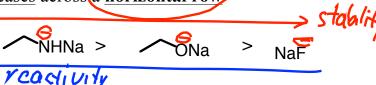
Copyright © 2006 Pearson Prentice Hall, Inc.

 $Nuc:^- + R - X \longrightarrow Nuc - R + X^-$

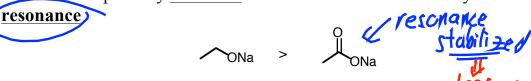

Nucleophile		Product	Class of Product
R—X + ⁻: <u>¨</u> ::	\longrightarrow	R−Ï:	alkyl halide
R—X + ⁻:ÖH	\longrightarrow	R—ÖН	alcohol
$R-X + -: \ddot{O}R'$	\longrightarrow	$R - \ddot{O}R'$	ether
R—X + ⁻: ;;H	\longrightarrow	R−ËH	thiol (mercaptan)
$R-X + \ddot{S}R'$	\longrightarrow	$R-\ddot{S}R'$	thioether (sulfide)
$R-X + :NH_3$	\longrightarrow	$R - NH_3^+ X^-$	amine
R-X + -: N = N = N:-	\longrightarrow	R - N = N = N = N = N:-	azide
$R-X + -: C \equiv C-R'$	\longrightarrow	$R-C\equiv C-R'$	alkyne
$R-X + -:C \equiv N:$	\longrightarrow	$R-C\equiv N$:	nitrile
R—X + R'—COÖ:-	\longrightarrow	R'— COO — R	ester
$R - X + : P(Ph)_3$	\longrightarrow	$[R-PPh_3]^+$ ^-X	phosphonium salt

6.10, 6.11 Structural Factors that Impact $S_N 2$

A. Nycleophile


1. Anion versus Neutral: Should be ANIONIC

ČH₂Na >



2. Anion Stability: Less Stable should be More Reactive (Reactant Stability-Reactivity Principle)

a. -anion nucleophilicity decreases across a horizontal row (electronegativity factor)

b. -anion nucleophilicity decreases when an anion is stabilized by

c. -anion nucleophilicity increases down a vertical column

NaSeH > NaSH > NaOH

3. Size: all else equal, smaller is better than bigger

B. Electrophile

- 1. Substrate: Allylic $> 1^{\circ} > 2^{\circ} > >> 3^{\circ}$, alkenyl, aryl
 - 3° and alkenyl, aryl never do $S_N 2$
 - transition-state stability-reactivity principle
 - Steric clutter in the transition state explains the $1^{\circ} > 2^{\circ} > >> 3^{\circ}$ pattern
 - Allylic benefits from a complex orbital resonance effect in the T-state
 - Alkenyl/aryl halides are bad for some molecular orbital reasons (backside attack doesn't work, particularly for aryl halides)

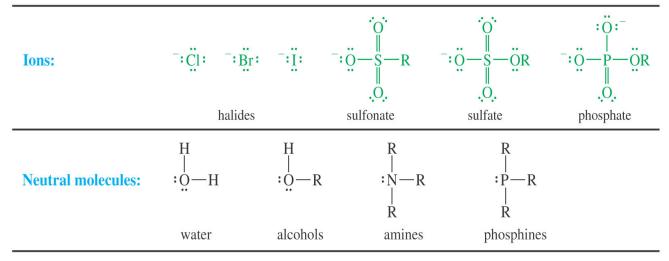
2. Leaving Group: R-I > R-Br > R-Cl

- reactant stability-reactivity principle
- weaker bonds break faster

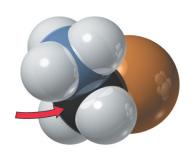
Analogy: Anions as Bases, Anions as Nucleophiles.

Factors that make an anion less stable make it more reactive as both a base and as a nucleophile. (normally....)

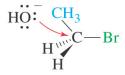
Basicity

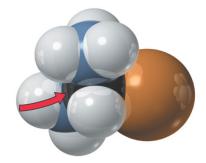

$$B: + H - A \qquad \stackrel{K_{eq}}{\longleftrightarrow} \qquad B - H + A:$$

Nucleophilicity

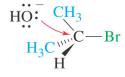

Copyright © 2006 Pearson Prentice Hall, Inc.

Various Leaving Groups.

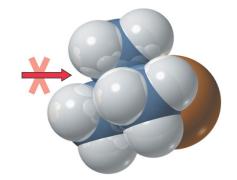

- 1. Halides are good, but not the only leaving groups.
- 2. The more stable something is after it leaves, the better it is as a leaving group. -the halide anions are like what you'd get from HCl, HBr, HI (strong acids).
- -the sulfonates are like what you'd get from sulfuric acid (strong acid)
 -water is like what you'd get from hydronium (strong acid)
- 3. Notice that things were one charge unit more positive with one extra bond before they actually left.
- -to get H2O off, you'd have had charge ROH2 (cation) first.
- -From a neutral alcohol, the leaving group would be hydroxide (bad), not water



Steric Factor: primary > secondary >>> tertiary



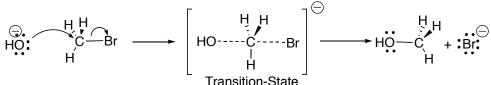
ethyl bromide (1°) attack is easy



isopropyl bromide (2°) attack is possible

Copyright © 2006 Pearson Prentice Hall, Inc.

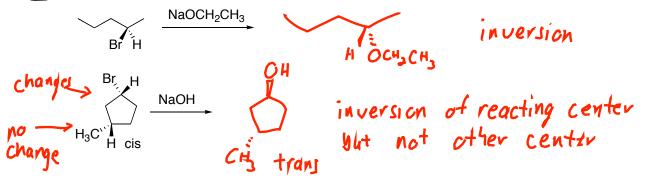
t-butyl bromide (3°) attack is impossible


- 1. Crowded Transition-state. Sterically sensitive
- 2. Inversion of stereochemistry

Copyright © 2006 Pearson Prentice Hall, Inc.

6.12 Inversion of Stereochem in S_N2

In the mechanism, the nucleophile attacks from the "backside" or opposite side from the leaving group → inverts configuration



- Inversion occurs mechanistically in every S_N2 reaction
- But inversion is chemically relevant **only** when a chiral carbon is involved

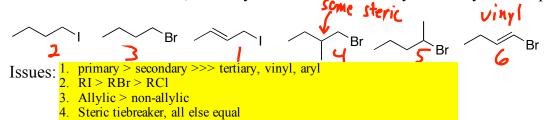
Br H + NaOCH ₃ + NaOCH ₃	Br + NaOCH ₃ → OCH ₃
Inversion matters, since product is chiral	Inversion doesn't matter, for achiral product

Predicting products when chiral carbons undergo inversion:

- 1. Keep the carbon skeleton fixed
- 2. If leaving group is "hashed", the nucleophile will end up "wedged" in the product
- 3. If leaving group is "wedged", the nucleophile will end up "hashed" in the product

Two Standard Proofs for S_N2 mechanism:

- Inversion of configuration on a chiral carbon
- 2nd order rate law


Predicting Products for S_N2 Reactions

- 1. Don't change the structure for the carbon skeleton
- 2. Put the nucleophile in exactly the spot where the halide began...
- 3. Unless the halide was attached to a **chiral** center; in that case invert the configuration for the product
 - a. If the halide was "wedged", the nucleophile should be "hashed"
 - b. If the halide was "hashed", the nucleophile should be "wedged"
- 4. Don't mess with any "spectator" portions: whatever was attached to the nucleophilic anion at the beginning should still be attached at the end

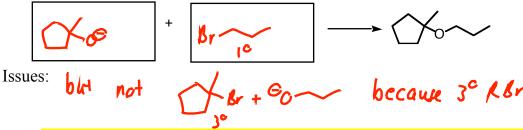
More S_N2 Problems

1. Rank the reactivity toward NaOCH₃ (For any problem like this, try to recognize what kind of a reaction it is, so that you know what stability/reactivity issues apply).

2. Rank Reactivity toward Br (For any problem like this, try to recognize what kind of a reaction it is, so that you know what stability/reactivity issues apply).

Issues: 1. Charge: Anions > Neutral

2. Electronegativity/periodic table: N > O


3. Resonance stabilization reduces nucleophilic reactivity

3. What nucleophile should you use to accomplish the following transformations?

4. Draw the Products, <u>Including Stereochemistry</u>. (Stereochemistry will matter for $S_N 2$ and $S_N 1$ reactions anytime the haloalkane is 2°)

Issue: Inversion of stereochemistry at reacting carbon

5. Choose Reactants to make the following, from a haloalkane and some nucleophile.

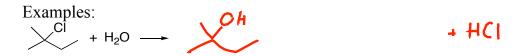
Electrophile RX needs to be methyl, primary, or secondary. But it can't be tertiary, vinyl, or aryl. In the problem shown, the "boxed" answers involve a primary.

In the problem shown, the "boxed" answers involve a primary RX. The "bad" answer has a tertiary RX.

$6.13 \text{ S}_{N}1 = \underline{\textbf{S}}\text{ubstitution}_{\text{Nucleophilic}}\underline{\textbf{1}}\text{st Order} = \text{``Solvolysis''}$

• Dramatic difference in mechanism, rates, structure dependence, and stereochemical outcome (compared to $S_N 2$)

General: $R-X + Z-H \rightarrow R-X + HX$ neutral


Neutral, non-anionic nucleophiles do the substitution

- 1. Often this is just the solvent (H₂O, ROH, RCO₂H are common)
 - For this reasons, these reactions are often called "solvolysis" reactions
- 2. Heat is often required
- 3. Acid is sometimes used to accelerate S_N1 reactions

Predicting Products for S_N1 Reactions

- 1. Don't change the structure for the carbon skeleton
- 2. Connect "R" and "Z", while taking the halide off of the electrophile and H off of the nucleophile
- 3. Unless the halide was attached to a **chiral** center, a **racemic mixture** will result
- 4. Maintain the integrity of the spectator attachments

3-Step Mechanism

- 1. Step 1: Carbocation Formation. THIS IS THE SLOW STEP
 - Therefore the rate is controlled by cation stability!
- 2. Step 2: Carbocation capture by neutral molecule (usually a solvent molecule)
 - When cation and neutral combine, a cation is produced
- 3. Step 3: Deprotonation to get neutral

Notes:

- 1. Carbocation formation is key
- 2. Rate = k[R-X] \rightarrow First order
- 3. See cations, not anions. Neutral, not anionic nucleophile.
- 4. Charge and atoms must balance in step 2. Thus, the oxygen retains the hydrogen.
- 5. Oxygen eventually loses the H, but only in step 3.
- 6. Rate can be enhanced by AgNO₃. The Ag+ cation helps strip the halide off in step 1.

Structural Factors that Impact S_N1 Rates

Nucleophile: Should be NEUTRAL, but otherwise non-factor

Electrophile

- 1. Substrate: Allylic $> 3^{\circ} > 2^{\circ} > 1^{\circ} >$ alkenyl, aryl
 - o Resonance is huge
 - o alkenyl, aryl never do S_N2, 1° only with AgNO₃
 - o product stability-reactivity principle: in the rate-determining step, the more stable the product **cation**, the faster it will form
 - o In terms of 1°, 2°, 3°, $S_N 1$ and $\overline{S_N 2}$ have exactly opposite patterns
- 2. Leaving Group: R-I > R-Br > R-C1
 - o reactant stability-reactivity principle: in the rate determining step, the weaker the C-X bond, the faster it will break
 - \circ This pattern is the same as for $S_N 2$
- 3. AgNO₃ Helps
 - Ag+ helps strip the halide off in step one
- 4. Polar Solvent Helps
 - A polar solvent helps to stabilize the ions that form in the rate-determining step

Solvent Polarity:					
Solvent	H ₂ O	СН ₃ ОН			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Relative Rate	8000	1000	1	0.001	0.0001

6.14 S_N1 Stereo: Racemization

Original stereochemistry is forgotten at the carbocation stage, get racemic R/S mixture

$$H_3C$$
 Br H_2O H_3C OH HO CH_3 optically active Racemic Mixture

Why? Carbocation forgets original stereo:

1. Check nucleophile. Neutral or Anion?

2. Check Electrophile RX. Tertiary or secondary (SN1 OK). Primary, vinyl, or aryl no SN1.

$$2. \quad \text{Br} \quad \text{H} \quad \text{A} \quad \text{Alabeta}$$

allylic

9.
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

10. Rank Reactivity towards HO (For any problem like this, try to recognize what kind of a reaction it is, so that you know what stability/reactivity issues apply).

Issues:

- 1. Tertiary > secondary >>>>> primary, vinyl, aryl
- 2. RI > RBr > RC1
- 3. Allylic > non-allylic

$\underline{6.16 \ Comparing \ S_N 2 \ vs \ S_N 1}$

		<u>S</u> _N <u>1</u>	$S_{N}2$
1	Nucleophile	Neutral, weak	Anionic, strong
2	Substrate	$3^{\circ} \text{ R-X} > 2^{\circ} \text{ R-X}$	$1^{\circ} \text{ R-X} > 2^{\circ} \text{ R-X}$
	Allylic effect	Allylic Helps	Allylic helps
3	Leaving Group	I > Br > Cl	I > Br > Cl
4	Solvent	Polar needed	Non-factor
5	Rate Law	K[RX]	k[RX][Anion]
6	Stereochemistry (on chiral, normally 2° R-X)	Racemization	Inversion
7	Ions	Cationic	Anionic
8	Rearrangements	Problem at times	Never

<u>Identify as S_N1 or S_N2 or No Reaction.</u> Draw the Product(s), if a reaction occurs.

1.
$$\nearrow$$
 Br + NaOCH₂CH₃ \longrightarrow SN1 OCH₂ CH₃

2.
$$\frac{|A|}{|A|} + \frac{|A|}{|A|} \rightarrow No \text{ Reaction}$$
3. $\frac{|A|}{|A|} + \frac{|A|}{|A|} \rightarrow SN$

Which fit $S_N 1$, which fit $S_N 2$?

- 1. Faster in presence of silver nitrate? S_{ν}
- 2. Faster in water than in hexane?
- 3. When the moles of reactant is kept the same, but the volume of solvent is cut in half, the reaction rate increases by 2-fold?
- 4. By 4-fold?
- 5. 2-bromobutane reacts faster than 1-bromobutane?
- 6. 2-bromobutane reacts slower than 1-bromobutane?

6-17 E1 Elimination Reactions

Examples.

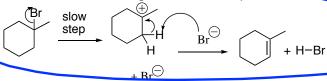
Examples.

$$H_2O$$
 H_3
 H_4
 H_4
 H_5
 H_5
 H_5
 H_6
 H_7
 $H_$

Notes

Under S_N1 conditions, some elimination product(s) form as well

(major E1)


- E1 and S_N1 normally compete, resulting in mixtures
 - This is not good from a synthetic perspective.
- Structurally Isomeric Alkenes can form
 - The double bond must involve the original halogenated carbon and any neighbor carbon (that had a hydrogen to begin with that can be eliminated)

(minor E1)

- Normally the alkene with fewer alkene H's is formed more extensively over alkenes with more alkene H's. (More C-substituted alkene is major).
- Neutral/acidic (the formula starts neutral, but acid is produced)
- 1st order rate law

 $r = k[RX]^{1}$

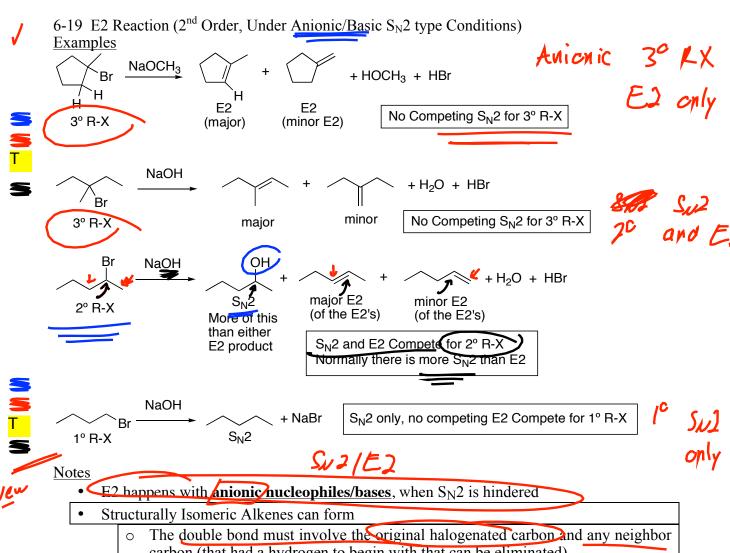
E1 Mechanism: 2 Steps

- 1. Step 1: Carbocation Formation. THIS IS THE SLOW STEP
 - a. Therefore the rate is controlled by cation stability! Just like S_N1!
 - b. Benefits from exactly the same factors that speed up S_N1 (3° > 2°, RI > RBr, polar solvent, etc..)
- 2. Step 2: Deprotonation from a carbon that neighbors the cation/original halogenated carbon
 - a. Can draw bromide as base for simplicity
 - b. But often it's actually water or alcohol solvent that picks up the proton

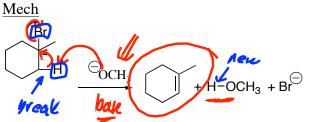
E1 Summary

Recognition: A. Neutral, weak nucleophile. No anionic nucleophile/base, and

B. 3° or 2° alkyl halide. (Controlled by cation stability).


(For 2° alkyl halides, E1 is often accompanied by variable amounts of S_N1.)

Orientation: The most substituted alkene forms


Predicting the major product: Remove halide and a hydrogen from the neighboring carbon that can give the most highly substituted alkene. The hydrogen on the neighboring carbon can be cis or trans.

Stereochemistry: Not an issue. The eliminating hydrogen can be cis or trans. .

Mech: Stepwise, 2 steps, via carbocation. Be able to draw completely.

- carbon (that had a hydrogen to begin with that can be eliminated)
- Normally the alkene with fewer alkene H's is formed more extensively over alkenes with more alkene H's. (More C-substituted alkene is major).

- anionic. Anion base gets things started.
- 2nd order rate law. Rate = k(R-X) anion base
- It all happens in one concerted step, but there are three arrow to show all the bond making and breaking

Bonds Made	Bonds Broken
Base to hydrogen	C-X bond
C=C pi bond	C-H bond

E2 Summary

TSUJ/E2

Recognition:

A. Anionic Nucleophile/Base, and

18. 3° or 2° alkyl halide

(1° alkyl halides undergo SN2 instead. For 2° alkyl halides, E2 is often accompanied by variable amounts of SN2.)

Orientation: The most substituted alkene forms (unless a bulky base is used, ch. 7) **Predicting product:** Remove halide and a hydrogen from the neighboring carbon that can give the most highly substituted alkene. The hydrogen on the neighboring carbon must be trans, bowever.

Stereochemistry: Anti elimination. The hydrogen on the neighbor carbon must be trans/anti-

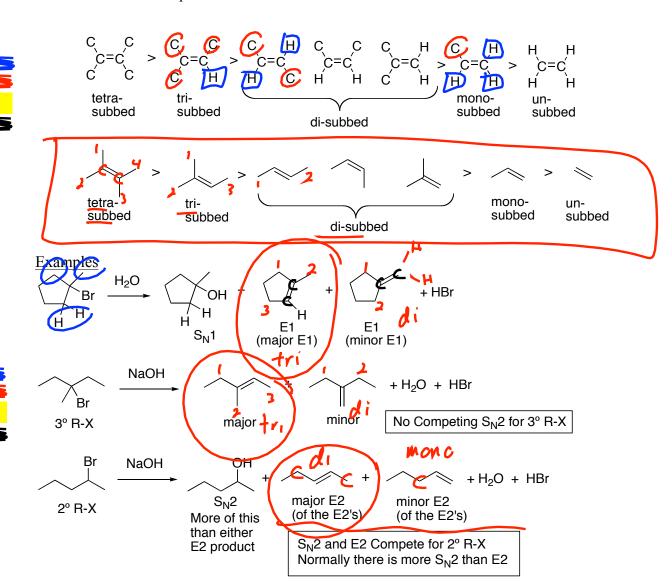
Mech: Concerted. Uses anion. Be able to draw completely. Only one concerted step!

$S_N 1$ vs E1

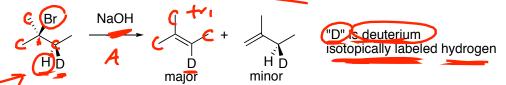
• Both satisfy the carbocation. They just meet it's bonding need with different electrons.

S_N2 vs E2

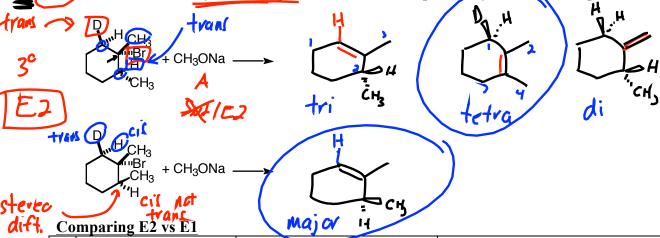
- 1. Both provide an electron pair to displace the C-Br bond pair. They just use different electrons.
- 2. Both involve the anion. It's called the nucleophile in the SN2, the base in the E2.
- 3. The SN2 involves a crowded transition state, and thus is strongly impacted by steric factors. The E2 does not have any steric problems (and in fact alleviates them).
- 4. The difference in steric profile explains why for SN2, $1^{\circ} > 2^{\circ} > 3^{\circ}$, but that for E2, the reactivity of 3° is just fine.



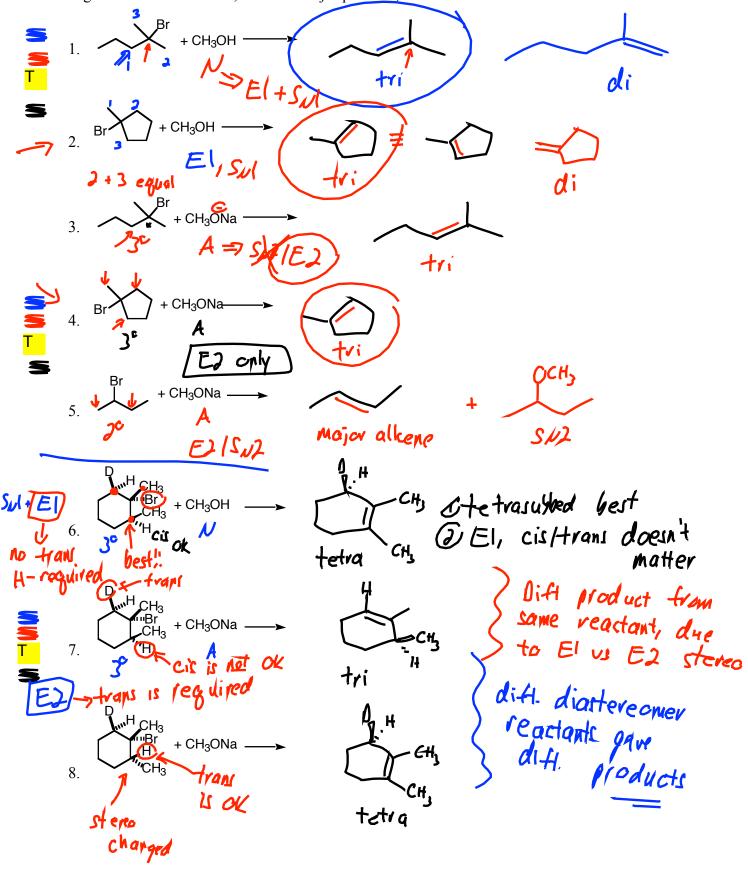
6-18 Zaitsev's Rule: When E1 or E2 elimination can give more than 1 structurally isomeric alkene the more highly Carbon-substituted alkene form will predominate over a less highly carbon-substituted alkene.


a. The fewer H's on the product alkene the better.

- o Every Alkene has four attachments. The fewer of these that are H's, the better
- When pictures are drawn in which the H's are not shown, the more highly substituted alkenes turn out to be the best.
- b. Why? Product Stability-Reactivity Rule. Alkenes with more C's and fewer H's attached are more stable.
- c. Alkene Stability is shown below: tetra->tri->di->mono->unsubstituted
 - Why?
 - Alkene carbons are somewhat electron poor due to the inferior overlap of pi bonds. (One carbon doesn't really "get" as much of the other carbon's electron as is the case in a nice sigma bond).
 - Since alkyl groups are electron donors, they stabilize electron-deficient alkene carbons.
 - Analogous to why electron-donating alkyls give the $3^{\circ} > 2^{\circ} > 1^{\circ}$ stability pattern for cations and radicals


Stereochemistry of E2 Eliminations (6.20)

- 1. For (E2) (not for E1) C-H and C-X bonds must be in the same plane (coplanar)
- 2. The halogen and the hydrogen being removed must be trans to each other
- 3. Why?
 - a. Due to orbital overlap requirements.
 - b. In the concerted E2 mechanism, the electrons from the hydrogen must essentially come in backside to the leaving halide
 - o just as in backside-attack S_N2 mechanism


4. Sometimes, a molecule will need to single-bond spin into a "trans" conformation to enable a trans-elimination.

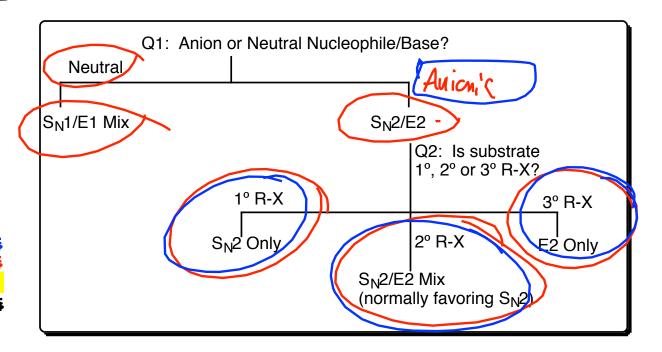
5. Eliminations in Cyclic Compounds are Often impacted by the Trans Requirement

		<u>E1</u>	<u>E2</u>
1	Nucleophile/Base	Neutral, weak, acidic	Anionic, strong, basic
2	Substrate	8 or 20	3° RX not allowed
	Allylic effect	Allylic Helps	Non-tactor
3	Leaving Group	I > Br > Cl	I > Br > Cl
4	Solvent	Polar needed	Non-factor
5	Rate Law	k[RX]	k[RX][Anion]
6	Stereochemistry	Non-selective	Trans requirement
7	Ions	Cationic	Anionic
8	Rearrangements	Problem at times	Never
9	Orientation	Zaitsev's Rule: Prefer	Zaitsev's Rule: Prefer more
		more substituted alkene	Substituted alkene (assuming
			trans requirement permits)

Elimination Problems: Draw the major Elimination Product for the following Reactions. Classify as E1 or E2. (There may be accompanying S_N2 or S_N1 material, but to whatever degree elimination occurs, draw the major product.)

Comparing $S_{\underline{N}}$ 2 vs $S_{\underline{N}}$ 1 vs E2 vs E1: How Do I Predict Which Happens When?

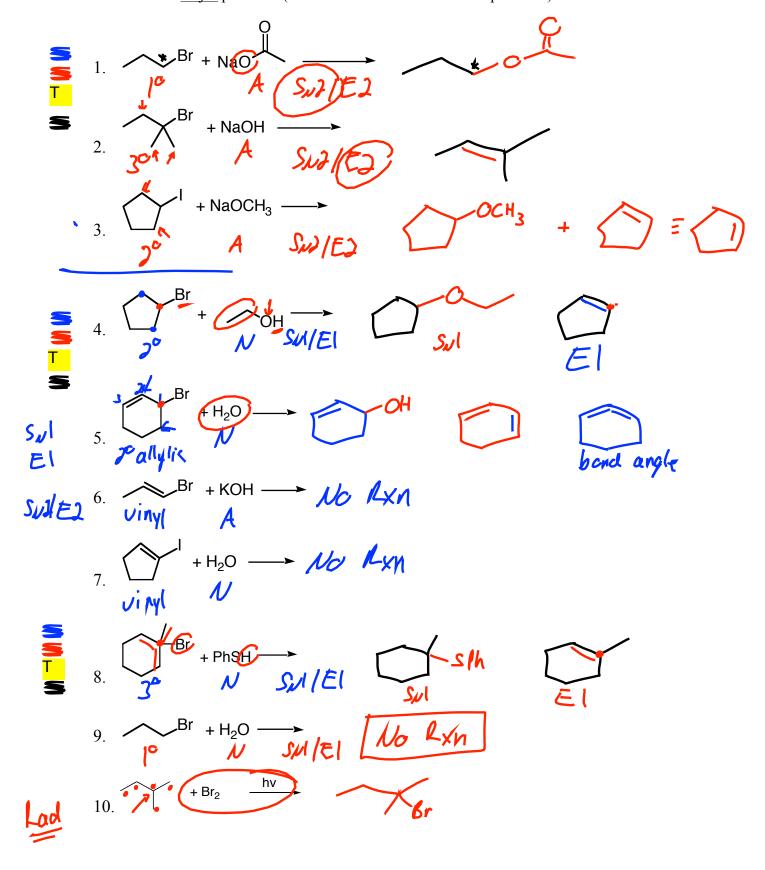
Step 1. Check nucleophile/base

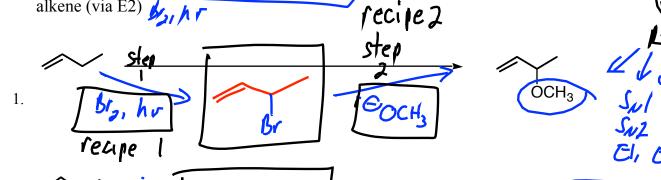

- If neutral then $S_N 1/E1$ mixture of both
- Fanionic the S_N2/E2.

Step 2: If anionic and in the $S_N 2/E2$ pool, then Check the substrate.

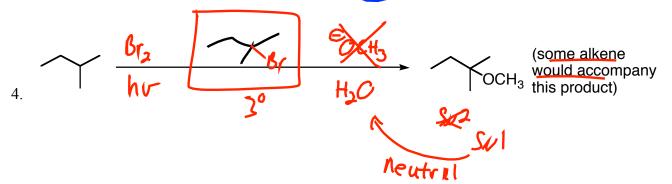
 S_N^2/E_2 mixture. Often more S_N^2 , but not reliable...

Notes:


1° R-X	S _N 2 only	No E2 or $S_N1/E1$ (cation
		too lousy for $S_N 1/E1$; $S_N 2$
		too fast for E2 to compete)
3° R-X	E2 (anionic) or	No S_N^2 (sterics too lousy)
	S _N 1/E1 (neutral/acidic)	,
2° R-X	mixtures common	


- Note: Aryl and Vinyl Halides will not undergo <u>any</u> of these types of reactions.
- If you see Br₂/hv type recipe, then you're back in the chapter 4 world of radical halogenation

For each mixture,


- a. Classify the Type of Reaction (or "no reaction")
- b. Draw the <u>major</u> product. (Or both a substitution and elim product..)

Design Synthetic Plans for converting the starting materials into the target molecules.

Keys:

- 1. These can't be done directly, in a single recipe. At least two laboratory operations are required.
- 2. Each sequence show above requires an increase in functional groups. An $S_N 2/S_N 1$ or E2/E1 changes functionality but does not create functionality. But radical bromination does create a functional group.
- 3. Thus the key reaction for creating the functionality: $R-H \rightarrow L-br$
- 4. Once you've converted the starting alkane to alkyl bromide, you can interconvert that bromide group into something else by $S_N 2/S_N 1$ or E2/E1

Practice: Mechanism Practice

Draw the **mechanism** for formation of the m_{E2} reactions. In some cases where both eliminas the problem specifies whether to draw the sulE1

Radical halogenation

SN2

ME2

All Caric

Mechs:

Sul H₂O (Subst.)

H₂O (Subst.)

H₃O (Subst.)

H₃O (Subst.)

1.

Deprot (in an SN1 or an E1)

1. No base shown

be

- 2. Bromide anion as base
- 3. Solvent molecule as base

Br H NaOCH₃ elim.

ე-0cH3 *Nd*€ Λ.⊖

CI H + Br₂ hv

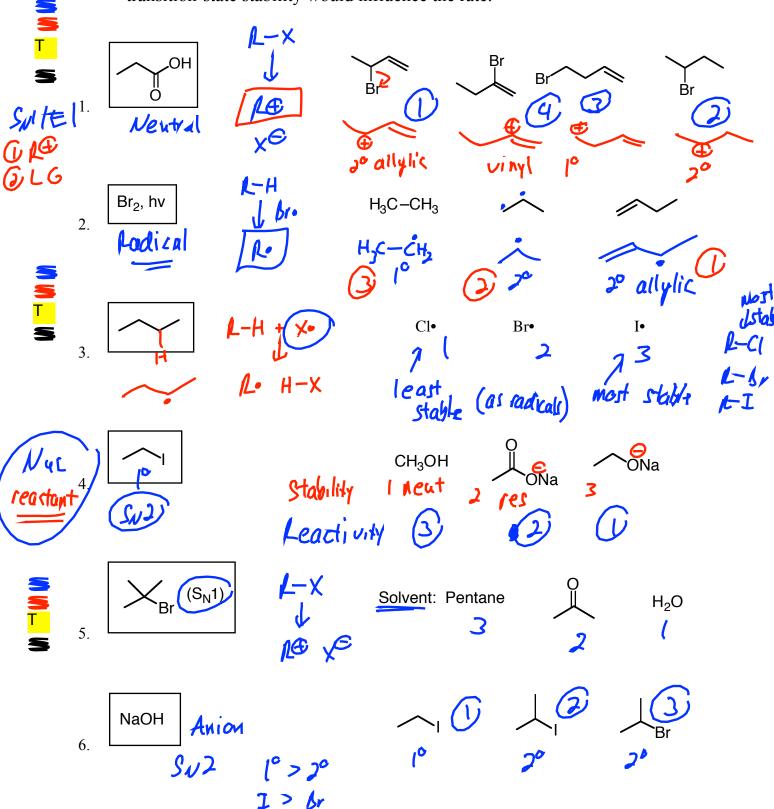
H br-br

br ·br

4. Chiral -> invert

Cy H

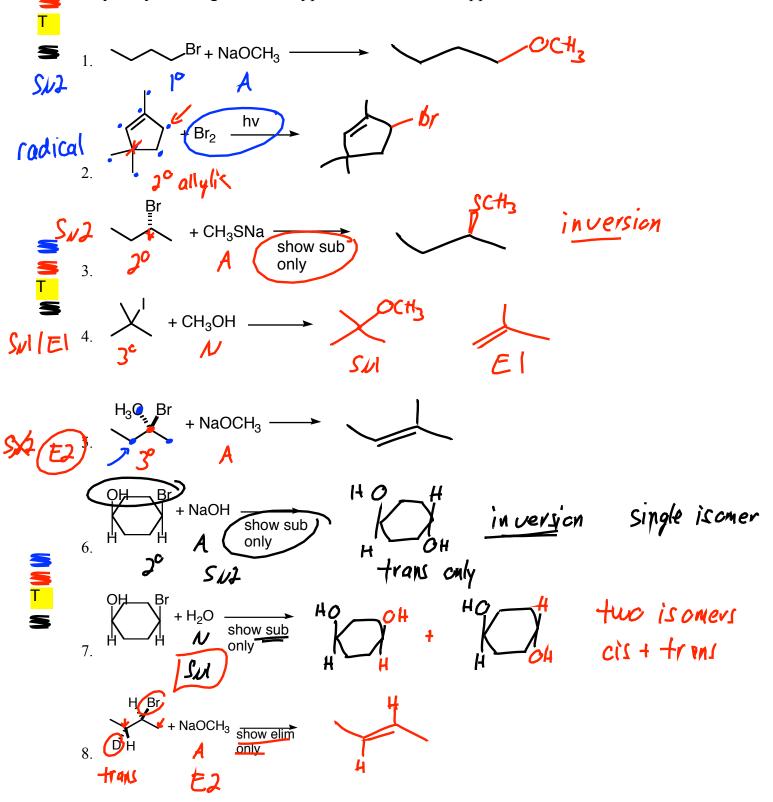
CH. H

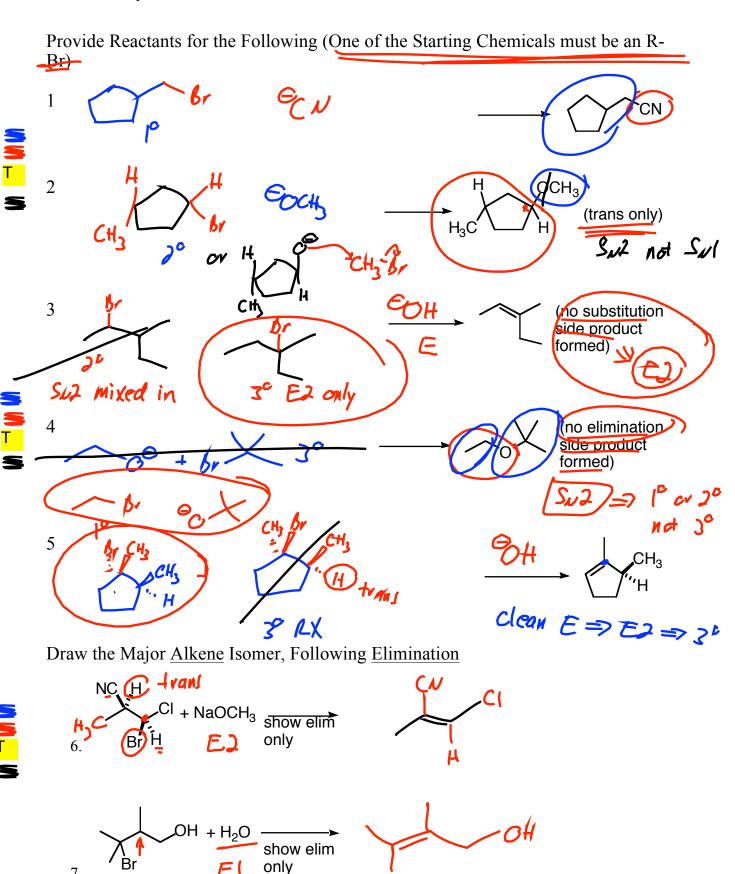

El 5.

Br + H₂O elim + H₂O H H H

Practice: Ranking Practice

Rank the Reactivity of the chemicals shown toward the thing in the box. Keys:


- Identify the type of reaction that would be involved
- Think about the rate-determining step and how reactant or product or transition-state stability would influence the rate.


Practice: Predict-the-Product Practice

Give the Major Product(s) for each of the following. If it's likely to give a mixture of both substitution and elimination, just draw the substitution product. Designate stereochemical outcomes when stereochemistry is relevant (2° substrates).

Key: Try to recognize what type of reaction will happen first.

7.

- 6-15 Carbocation Rearrangements (and their impact in S_N1 and E1 reactions)
- 1. Carbocations are very unstable, and sometimes rearrange to other more stable carbocations.
- 2. A rearrangement requires that a superior cation will result. Four cases:
 - a. $2^{\circ} \rightarrow 3^{\circ}$
 - b. non-allylic → allylic
 - c. strained ring → unstrained or less strained ring
 - d. 1° cation \Rightarrow 2° or 3° cation (rare, since 1° cations are hard to make and pretty rare)

Hydride Shifts	Alkyl Shifts
H H 2° 3°	CH ₃ H CH ₃ 2° 3°
H H H H H 2° allylic	H H H H

- 3. Two processes for cation rearrangement:
 - a. Hydride shift (an H jumps over)
 - b. Alkyl shift (a carbon jumps over)
 - The resulting cation must always be on a carbon adjacent to the original
 - rearrangement does not occur if you start with a good cation.
- 4. Most cation mechanisms that start with 2° or 3° cations don't undergo rearrangement because rearrangement does not lead to improved cation stability

Why Bother? No Stability Gain, No Motive, Won't Happen	H H 3°	H H 2°		H H 2°	→ H H ⊕ H 2°
--	--------	--------------	--	--------	--------------------

5. Examples in SN1

• Product mixture results from competition between Path A and Path B.

